B52C-01:
Beyond the climate envelope: using trait filtering models to predict biome boundaries from plant physiology.

Friday, 19 December 2014: 10:20 AM
Rosemary Fisher, NCAR, Boulder, CO, United States, William A Hoffmann, North Carolina State University at Raleigh, Plant Biology, Raleigh, NC, United States and Stefan Muszala, National Center for Atmospheric Research, Boulder, CO, United States
Abstract:
The introduction of second-generation dynamic vegetation models - which simulate the distribution of light resources between plant types along the vertical canopy profile, and therefore facilitate the representation of plant competition explicitly - is a large increase in the complexity and fidelity with which the terrestrial biosphere is abstracted into Earth System Models. In this new class of model, biome boundaries are predicted as the emergent properties of plant physiology, and are therefore sensitive to the high-dimensional parameterizations of plant functional traits. These new approaches offer the facility to quantitatively test ecophysiological hypotheses of plant distribution at large scales, a field which remains surprisingly under-developed.

Here we describe experiments conducted with the Community Land Model Ecosystem Demography component, CLM(ED), in which we reduce the complexity of the problem by testing how individual plant functional trait changes to control the location of biome boundaries between functional types. Specifically, we investigate which physiological trade-offs determine the boundary between frequently burned savanna and forest biomes, and attempt to distinguish how each strategic life-history trade-off (carbon storage, bark investment, re-sprouting strategy) contributes towards the maintenance of sharp geographical gradients between fire adapted and typically inflammable closed canopy ecosystems. This study forms part of the planning for a model-inspired fire manipulation experiment at the cerrado-forest boundary in South-Eastern Brazil, and the results will be used to guide future data-collection and analysis strategies.