Pore-scale Evolution of Supercritical CO2 within Bentheimer Sandstone during Multiple Drainage-Imbibition Cycles

Monday, 15 December 2014: 5:45 PM
Anna L Herring, Linnea Andersson and Dorthe Wildenschild, Oregon State University, Corvallis, OR, United States
Geologic CO2 sequestration has been proposed as a climate change mitigation strategy to limit emissions of CO2 to the atmosphere from large fossil-fuel burning CO2 point sources; however, there are concerns associated with the long-term stability of a mobile subsurface CO2 plume. The large-scale movement of subsurface supercritical CO2 (scCO2) can be prevented via capillary trapping, wherein scCO2 is immobilized in the subsurface by capillary interactions between the solid surface, resident brine, and scCO2. Capillary trapping occurs in two steps: first, the porous medium undergoes drainage as scCO2 is injected into the system; then, wetting fluid re-enters the medium in an imbibition process, isolating small bubbles of scCO2 in the pore bodies of the medium. There are many empirical models which predict capillary trapping for a single drainage-imbibition cycle; however, in an engineered CO2 sequestration project, it is possible to implement cyclic scCO2-water injections in a water-alternating-gas (WAG) injection scheme in which the system may undergo multiple CO2 injections to potentially increase the trapping efficiency of scCO2.

We present experimental results of multiple drainage-imbibition cycles of scCO2 and 1:6 by mass potassium iodide (KI) brine within Bentheimer sandstone. Capillary (differential) pressure and absolute pressures for each phase were continuously measured throughout each flow process, which is a unique feature of our experimental system. Experiments were conducted at a working pressure of 8.3 MPa (1200 PSI) and 40oC, and synchrotron x-ray computed microtomography (x-ray CMT) images were collected of the drainage and imbibition process endpoints at a resolution of 3.19 µm at the Advanced Photon Source at Argonne National Laboratory.

The evolution of the connectivity, topology, morphology, and capillary trapping of scCO2 phase is analyzed as a function of capillary pressure, scCO2 saturation, and sample history. Preliminary results suggest that capillary trapping of scCO2 is hysteretic and that this pore-scale phenomenon and dependence should be considered when designing large scale CO2 injection processes. These results are discussed in terms of current empirical capillary trapping models as well as from alternative theoretical perspectives.