C31D-0349:
Penn State geoPebble system: Design,Implementation, and Initial Results

Wednesday, 17 December 2014
Sridhar Anandakrishnan1, Julio V Urbina2, Sven Gunnar Bilen3, Aaron Fleishman3 and Peter Burkett4, (1)Pennsylvania State University Main Campus, University Park, PA, United States, (2)The Pennsylvania State Univers, University Park, PA, United States, (3)Penn State Univ, University Park, PA, United States, (4)The Pennsylvania State University, University Park, PA, United States
Abstract:
The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ∼150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature).

A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and current efforts to test this new instrument system and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects.