H53B-0859:
A combined monitoring and modeling approach to quantify water and nitrate leaching using effective soil column hydraulic properties

Friday, 19 December 2014
Valentin Couvreur, Maziar M. Kandelous, Ahmad B Moradi, Shahar Baram, Harmony Mairesse and Jan W Hopmans, University of California Davis, Davis, CA, United States
Abstract:
There is a worldwide growing concern for agricultural lands input to groundwater pollution. Nitrate contamination of groundwater across the Central Valley of California has been related to its diverse and intensive agricultural practices. However, there has been no study comparing leaching of nitrate in each individual agricultural land within the complex and diversely managed studied area.

A combined field monitoring and modeling approach was developed to quantify from simple measurements the leaching of water and nitrate below the root zone. The monitored state variables are soil water content at several depths within the root zone, soil matric potential at two depths below the root zone, and nitrate concentration in the soil solution. In the modeling part, unsaturated water flow and solute transport are simulated with the software HYDRUS in a soil profile fragmented in up to two soil hydraulic types, whose effective hydraulic properties are optimized with an inverse modeling method.

The applicability of the method will first be demonstrated “in-silico”, with synthetic soil water dynamics data generated with HYDRUS, and considering the soil column as the layering of several soil types characterized in-situ. The method will then be applied to actual soil water status data from various crops in California including tomato, citrus, almond, pistachio, and walnut. Eventually, improvements of irrigation and fertilization management practices (i.e. mainly questions of quantity and frequency of application minimizing leaching under constraint of water and nutrient availability) will be investigated using coupled modeling and optimization tools.