GC24A-08:
Climate, Biofuels and Water: Projections and Sustainability Implications for the Upper Mississippi River Basin

Tuesday, 16 December 2014: 5:36 PM
Debjani Deb1, Pushpa Tuppad2, Prasad Daggupati1, Raghavan Srinivasan1 and Deepa Varma3, (1)Texas A & M University, College Station, TX, United States, (2)S.J. College of Engineering, Department of Environmental Engineering, Mysore, India, (3)Shell Technology Center Bangalore, Bangalore, India
Abstract:
Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider a) how climate change would alter both water supply and demand and, b) in turn, how related changes in water availability will impact the production of biofuel crops and c) the environmental implications of large scale biofuel productions. Since, understanding the role of biofuels in the water cycle is key to understanding many of the environmental impacts of biofuels, the focus of this study is on modeling the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems to explore the impacts of the US biofuel policy and climate change on water and agricultural resources.

More specifically, this research will address changes in the water demand and availability, soil erosion and water quality driven by both climate change and biomass feedstock production in the Upper Mississippi River Basin. We used the SWAT (Soil and Water Assessment Tool) hydrologic model to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g. more use of marginal lands, greater residue harvest, increased yields), plus management practices due to biofuel crops to meet the RFS target on water quality and quantity. Results show that even if the Upper Mississippi River Basin is a region of low water stress, it contributes to high nutrient load in Gulf of Mexico through seasonal shifts in streamflow, changes in extreme high and low flow events, changes in loadings and transport of sediments and nutrients due to changes in precipitation patterns and intensity, changes in frequency of occurrence of floods and drought, early melting of snow and ice, increasing evaporation and changes in soil moisture.