P11B-3761:
Clumping in the Cassini Division and C Ring: Constraints from Stellar Occultations

Monday, 15 December 2014
Joshua E Colwell1, Richard Gregory Jerousek1 and Larry W Esposito2, (1)University of Central Florida, Orlando, FL, United States, (2)Univ of Colorado, Boulder, CO, United States
Abstract:
Particles in Saturn’s rings are engaged in a constant tug-of-war between interparticle gravitational and adhesive forces that lead to clumping, on the one hand, and Keplerian shear that inhibits accretion on the other. Depending on the surface mass density of the rings and the local orbital velocity, ephemeral clumps or self-gravity wakes can form, giving the rings granularity on the scale of the most-unstable length scale against gravitational collapse. The A ring and many regions of the B ring are dominated by self-gravity wakes with a typical radial wavelength of ~50-100 m. A characteristic of self-gravity wakes is that they can effectively shadow the relatively empty spaces in between them, depending on viewing geometry. This leads to geometry-dependent measurements of optical depth in occultations of the rings. The C ring and Cassini Division have significantly lower surface mass densities than the A and B ring such that in most of these regions the most-unstable wavelength is comparable to the size of the ring particles (~1 m) so that self-gravity wake formation is not expected nor have its characteristics in various measurements been observed. Here we present measurements of the optical depth of the C ring and Cassini Division with the Cassini Ultraviolet Imaging Spectrograph (UVIS) showing variations with viewing geometry in the “ramp” regions and the Cassini Division “triple band”. These variations are characteristic of self-gravity wakes. We place limits on clumping in other regions of the C ring and Cassini Division.