Development of a Simple Framework to Assess Hydrological Extremes using Solely Climate Data

Thursday, 18 December 2014
Etienne Foulon1, Patrick Gagnon2 and Alain N Rousseau1, (1)Institut National de la Recherche Scientifique-Eau Terre Environnement INRS-ETE, Quebec City, QC, Canada, (2)Agriculture et Agroalimentaire Canada - AAC, Qu├ębec City, QC, Canada
Extreme flow conditions such as droughts and floods are in general the direct consequences of short- to long-term weather/climate anomalies. For example, in southern Quebec, Canada, winter and summer 7-day low flows are due to summer and fall precipitations. Which prompts the question: is it possible to assess future extreme flow conditions from meteorological/climate indices or should we rely on the classical approach of using outputs of climate models as input to a hydrological model? The objective of this study is to assess six hydrological indices describing extreme flows at the watershed scale (Qmax, Qmin;7d, Qmin;30d for two seasons: winter and summer) using local climate indices without relying on the aforementioned classical approach.

To establish the relationship between climate and hydrological indices, daily precipitations, minimum and maximum temperatures from 89 climate projections are used as inputs to a distributed hydrological model. River flows are simulated at the outlet of the Yamaska and Bécancour watersheds in Québec for the 1961-2100 periods. To identify the best predictors, hydrological indices are extracted from the flow series, and climate indices are computed for different time intervals (from a day up to four years). The difference between four-month, cumulative, climatic demand (P-ETP) explains 69% of the 7-day summer low flow during the calibration process. For both watersheds, preliminary findings indicate that the selected indices explain, on average, 38 and 60% of the variability of high- and low-flow indices, respectively. Overall, the results clearly illustrate that the change in the hydrological indices can be detected through the concurrent trends in the climate indices. The use of many climate projections ensures the relationships are not simulation-dependent and shows summer events are particularly at risk with increasing high flows and decreasing low flows.

The development of a simple predictive tool to assess the impact of climate change on flows represents one of the major spin-off benefits of this study and may prooveto be useful to municipalities concerned with source water and flood management. Future work includes development of additional climate indices and application of the framework to more watersheds.