MR21A-4300:
Water in Olivine and its High-Pressure Polymorphs
Tuesday, 16 December 2014
Sylvia-Monique Thomas1, Steven D Jacobsen2, Craig R. Bina2, Patrick Reichart3, Marcus Moser3, Günther Dollinger3 and Erik H Hauri4, (1)University of Nevada Las Vegas, Las Vegas, NV, United States, (2)Northwestern University, Evanston, IL, United States, (3)Universität der Bundeswehr München, Department LRT2, Neubiberg, Germany, (4)Carnegie Institution of Washington, Department of Terrestrial Magnetism, Washington, DC, United States
Abstract:
Theory and high-pressure experiments imply a significant water storage capacity of nominally anhydrous minerals (NAMs), such as olivine, wadsleyite and ringwoodite, composing the Earth’s upper mantle and transition zone to a depth of 660 km. The presence of water, dissolved as OH into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. The first direct evidence for hydration of the transition zone has recently been reported by Pearson et al. (2014) and Schmandt et al. (2014). Knowledge of absolute water contents in NAMs is essential for modeling the Earth’s interior water cycle. To take advantage of IR spectroscopy as highly sensitive water quantification tool, mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry (SIMS), Raman spectroscopy or proton-proton(pp)-scattering. Broad beam pp-scattering has been performed on double-polished mm-sized mineral platelets (Thomas et al. 2008), but until recently analysis was not feasible for smaller samples synthetized in high-pressure apparati. Here we present first results from pp-scattering microscopy studies on µm-sized single crystals of hydrous olivine, wadsleyite and ringwoodite, which were synthesized at various pressure-temperature conditions in a multi-anvil press. The method allows us to quantify 3D distributions of atomic hydrogen in µm dimensions. These self-calibrating measurements were carried out at the nuclear microprobe SNAKE at the Munich tandem accelerator lab using a 25 MeV proton microbeam. We provide hydrogen depth-profiles, hydrogen maps and H2O concentrations. Pp-scattering data and results from independent Raman and SIMS analyses are in good agreement. Water contents for a set of high-pressure polymorphs with varying Fe-concentrations range from 0.8 wt% to 2.5 wt% H2O. From experimental data for Fo83, Fo87, Fo90 and Fo100 compositions we calculate mineral-specific absorption coefficients for the quantification of H2O using IR-spectroscopy, compare them with previously estimated values and discuss IR calibrations for major phases of the Earth’s mantle.