Origin of Terrestrial Water: Hydrogen/Deuterium Fractionation into Earth’s Core

Friday, 19 December 2014
Jun Wu and Peter R Buseck, Arizona State University, Tempe, AZ, United States
Hydrogen isotopic compositions are among the most important constraints on the origin of Earth’s water. Earth’s bulk water content, which is small but not negligible, is significantly greater than what the thermal gradient of the solar nebula disk would suggest for planetesimal materials condensed at one astronomical unit. The proto-solar nebula is a likely source of early Earth’s water, with probable contributions from one or more of the following: water-rich planetesimals, ordinary and carbonaceous meteorites, comets, asteroids, and interplanetary dust particles. However, all of these sources have been questioned, and the proposed proto-solar nebular origin has been disputed in light of the large difference in hydrogen isotopic composition between it and terrestrial water. Current opposition to the solar nebular hypothesis is based on the critical assumption that no processes in the interior of the early Earth changed the isotopic composition of hydrogen. Nevertheless, a hypothesized hydrogenation reaction of liquid iron (2Fe + xH2 ↔ 2FeHx) during core formation likely provided a fractionation mechanism between hydrogen and deuterium (D). We propose that modern D/H ratios at Earth’s surface resulted from this isotopic fractionation and that terrestrial water originated from oxidation of proto-solar hydrogen dissolved in the magma ocean in the early Earth by coexisting oxides (such as FeO). Thus, the isotopic composition of water on Earth can be mainly explained by internal terrestrial processes.