P23A-3970:
Planetary Doppler Imaging

Tuesday, 16 December 2014
Neil Murphy1, Stuart Jefferies2, Michael Hart3, William B Hubbard4, Adam P Showman4, Gerardo Hernandez5 and Logan Rudd5, (1)NASA Jet Propulsion Laboratory, Pasadena, CA, United States, (2)Institute for Astronomy, Honolulu, HI, United States, (3)University of Arizona, Astronomy, Tucson, AZ, United States, (4)University of Arizona, Tucson, AZ, United States, (5)Los Angeles City College, Los Angeles, CA, United States
Abstract:
Determining the internal structure of the solar system’s gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries.

A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn’s C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system’s giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made from space, however, much can be learned about Jupiter and Saturn using ground-based measurements.

We will present the first results from a ground-based observing campaign of Jupiter and Saturn, made from the Bok 90” telescope on Kitt Peak, intended to validate the work of Gaulme et al, and extend such observations to Saturn.