Tharsis Formation by Chemical Plume Due to Giant Impact Event

Friday, 19 December 2014
Jenna Fleck1, Dayanthie S Weeraratne2 and Peter Olson1, (1)Johns Hopkins University, Baltimore, MD, United States, (2)California State University Northridge, Northridge, CA, United States
Tharsis formed early in the history of Mars, likely during the Noachian but later than the hemispheric crustal dichotomy that it partially overprints (Johnson and Phillips, 2005; Solomon et al., 2005; Wenzel et al., 2004). It has been suggested that the crustal dichotomy may have been formed by a giant impact (Andrews-Hanna et al., 2008; Marinova et al., 2008; Nimmo et al., 2008). Several models have been proposed to explain a localized orogeny, but predict multiple, evenly-spaced plumes or have instability growth and rise times which are longer than Tharsis formation. We use fluid dynamic experiments to model the differentiation process during Mars accretion using low viscosity glucose syrup solutions and an emulsion of liquid gallium for the metal-rich magma ocean and a high viscosity glucose syrup for the mantle. Our experiments demonstrate the formation of metal-silicate diapirs from metal emulsion drops that form a pond at the base of the magma ocean. The diapirs descend through the underlying mantle with trailing conduit of low viscosity silicate material. The silicate material is buoyant and eventually ascends back through the conduit. Remaining emulsion drops that do not adhere with the diapir fall through the conduit, forcing the buoyant molten silicate material to exit the conduit laterally and ascend along a new trajectory. The time elapsed between diapir formation and ascent of the chemical plume in experiments scales with the time between the formation of the crustal dichotomy on Mars and the formation of Tharsis. Our model offers an explanation for the rapid formation of Tharsis on the edge of the crustal dichotomy via a single large upwelling event followed by smaller upwellings producing and the late stages of effusive volcanism observed in the Tharsis region.