ED21C-3456:
Undergraduate Student-built Experiments in Sounding-Rocket and Balloon Campaign

Tuesday, 16 December 2014
Dimitris Vassiliadis1, John A. Christian2, Amy M Keesee1, Michael Lindon1 and Gregory D. Lusk3, (1)West Virginia University, Physics and Astronomy, Morgantown, WV, United States, (2)West Virginia University, Mechanical and Aerospace Engineering, Morgantown, WV, United States, (3)Fairmont State University, Fairmont, WV, United States
Abstract:
Space physics and aerospace engineering experiments are becoming readily accessible to STEM undergraduates. A number of ionospheric physics experiments and guidance and navigation components were designed, built, integrated, and tested by STEM students at West Virginia University in the 2013-2014 academic year. A main payload was flown on NASA’s annual RockSat-C two-stage rocket launched from Wallops Flight Facility in Chincoteague, VA on the morning of June 26, 2014. A high-altitude balloon with a reduced payload was released from Bruceton Mills, WV, prior to the rocket and reached 30,054 m. The geographic distance between the two launch points is small compared to the footprint of geomagnetic and solar-terrestrial disturbances. Aerospace sensors provided flight profiles for each of the two platforms. Daytime E region electron density was measured via a Langmuir probe as a function of altitude from 90 km to the apogee of 117 km. Geomagnetic activity was low (Dst>-7 nT, AE<500 nT) so geomagnetic disturbances were probably due to solar quiet (Sq) currents. Earlier solar wind activity included two high-plasma-density regions measured by NASA’s ACE which impacted the magnetosphere producing two sudden impulses at midlatitudes (Dst=+19 and +13 nT). In an airglow experiment, the altitude range of the sodium layer was estimated to be 75-110 km based on in situ measurements of the D2emission line intensity. Acceleration, rotation-rate, and magnetic-field data are useful in reconstructing the trajectory and flight dynamics of the two vehicles and comparing with video from onboard cameras.

Participation in RockSat and similar programs is useful in ushering space science and spaceflight concepts in the classroom and lab experience of STEM undergraduates. Lectures, homework, and progress reports were used to connect advanced topics of Earth’s space environment and spaceflight to the students' core courses. In several cases the STEM students were guided by graduate students during lab work. Development of the flight payloads was supported by NASA’s Undergraduate Student Instrument Project, NSF/AGS, and the WV Space Grant.