NG23A-3798:
Toward Automated Feature Detection in UAVSAR Images
Abstract:
Edge detection identifies seismic or aseismic fault motion, as demonstrated in repeat-pass inteferograms obtained by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program. But this identification is not robust at present: it requires a flattened background image, interpolation into missing data (holes) and outliers, and background noise that is either sufficiently small or roughly white Gaussian. Identification and mitigation of nongaussian background image noise is essential to creating a robust, automated system to search for such features. Clearly a robust method is needed for machine scanning of the thousands of UAVSAR repeat-pass interferograms for evidence of fault slip, landslides, and other local features.Empirical examination of detrended noise based on 20 km east-west profiles through desert terrain with little tectonic deformation for a suite of flight interferograms shows nongaussian characteristics. Statistical measurement of curvature with varying length scale (Allan variance) shows nearly white behavior (Allan variance slope with spatial distance from roughly -1.76 to –2) from 25 to 400 meters, deviations from –2 suggesting short-range differences (such as used in detecting edges) are often freer of noise than longer-range differences. At distances longer than 400 m the Allan variance flattens out without consistency from one interferogram to another. We attribute this additional noise afflicting difference estimates at longer distances to atmospheric water vapor and uncompensated aircraft motion.
Paradoxically, California interferograms made with increasing time intervals before and after the El Mayor Cucapah earthquake (2008, M7.2, Mexico) show visually stronger and more interesting edges, but edge detection methods developed for the first year do not produce reliable results over the first two years, because longer time spans suffer reduced coherence in the interferogram. The changes over time are reflecting fault slip and block motion, indicating the continuing slip along minor faults in the post seismic phase of the main rupture. We show current results using computer vision methods that respect the noise and coherence characteristics.