Was there a Laramide "flat slab"?

Tuesday, 16 December 2014: 10:50 AM
Craig H Jones, University of Colorado at Boulder, Boulder, CO, United States
Slab-continent interactions drive most non-collisional orogenies; this has led us to usually anticipate that temporal changes or spatial variations in orogenic style are related to changes in the slab, most especially in the slab's dip. This is most dramatically evident for orogenies in the foreland, well away from the trench, such as the Laramide orogeny. However, the physical means of connecting slab geometry to crustal deformation remain obscure. Dickinson and Snyder (1978) and Bird (1984) laid out a conceptually elegant means of creating foreland deformation from shear between a slab and overriding continental lithosphere, but such strong shear removed all of the continental lithosphere in the western U.S. when included in a numerical simulation of flat slab subduction (Bird, 1988), a removal in conflict with observations of volcanic rocks and xenoliths in many locations. Relying on an increase in edge normal stresses results, for the Laramide, in requiring the little-deformed Colorado Plateau to either be unusually strong or to have risen rapidly enough and high enough to balance edge stresses with body forces. Early deformation in the Plateau rules out unusual strength, and the accumulation and preservation of Late Cretaceous near-sea level sedimentary rocks makes profound uplift unlikely (though not impossible). Relying on comparisons with the Sierras Pampeanas is also fraught with problems: the Sierras are not separated from the Andean fold-and-thrust belt by several hundred kilometers of little-deformed crust, nor were they buried under kilometers of marine muds as were large parts of the Laramide foreland. We have instead suggested that some unusual interactions of an obliquely subducting plate with a thick Archean continental root might provide a better explanation than a truly flat slab (Jones et al., 2011). From this, and given that several flat-slab segments today are not associated with foreland orogenesis and noting that direct evidence for truly flat-slab subduction is limited in cases like the Laramide, arguably flat slabs are neither necessary nor sufficient to drive foreland deformation. Clearly additional aspects of continent-ocean interaction (such as, perhaps, interaction of continental keels) need to be brought into play to understand non-collisional orogenies.