A23B-3236:
OSIRIS Detections of a Tropospheric Aerosol that Absorbs at Wavelengths Near 350 nm – Black Carbon?

Tuesday, 16 December 2014
D A Degenstein, Chris Roth, Adam E Bourassa and Nick Lloyd, University of Saskatchewan, Saskatoon, SK, Canada
Abstract:
The Canadian built OSIRIS instrument has been in operation onboard the Swedish spacecraft Odin since the autumn of 2001. During this 13 year period OSIRIS has recorded millions of spectra of the limb-scattered radiance in the wavelength range from 280 nm to 810 nm with approximately 1 nm spectral resolution. These measurements that scan tangents altitudes from 10 km to 65 km have primarily been used to retrieve stratospheric composition including vertical profiles of ozone, nitrogen dioxide, sulphate aerosol and bromine monoxide.

The ozone retrieval is done is such a way that it uses the vertical radiance profile at 350 nm as a non-ozone absorbing reference measurement and it is these measurements that have serendipitously indicated the presence of an absorbing aerosol at tropospheric altitudes. At this time there is no indication of the exact composition of this absorber but it has characteristics that are curiously like those of black carbon. This poster will outline: the technique used to detect the black carbon from OSIRIS measurements; the wavelength dependence of a pseudo absorber used in the SASKTARN radiative transfer model to accurately simulate the OSIRIS measurements; and the geographical distribution of the detections of this pseudo absorber.