P33E-01:
Feldspathic Rock Spectral Detections on Mars: Geologic Context, Possible Formation Mechanisms, and the TES/Themis Perspective

Wednesday, 17 December 2014: 1:40 PM
Deanne Rogers and Hanna Nekvasil, Stony Brook University, Geosciences, Stony Brook, NY, United States
Abstract:
Spectral detections from VNIR imaging spectrometers OMEGA and CRISM suggest feldspar-bearing rocks with <5% mafic minerals in restricted locations on Mars. The detections have been interpreted as anorthositic, or alternatively, felsic lithologies such as granite. The detections occur in a variety of contexts, including crater central peaks, walls, and floors, intercrater plains of Noachis Terra, and the Nili patera caldera floor. Here we focus on the Noachis Terra feldspathic rock detections, and present constraints from geologic context and complementary thermal infrared measurements. We also examine mechanisms for forming feldspar-rich lavas from crystal fractionation at the base of thick Martian crust. Noachis Terra exposures exhibit high thermal inertias and deep spectral contrast, consistent with competent, non-porous rock. They commonly overlie olivine basaltic bedrock and are ~20-25 m thick. THEMIS spectra from these units are inconsistent with quartz abundances > 5%, ruling out felsic compositions. THEMIS spectra are consistent with both anorthositic and basaltic lithologies; laboratory spectra of these lithologies are indistinguishable at THEMIS resolution. TES spectra do not match library anorthosites, with ~20-30% modeled pyroxene and ~5-10% olivine. Strong contribution from basaltic sediment to the TES spectra is unlikely given the deeper spectral contrast associated with the feldspathic units than underlying olivine basaltic bedrock. Future work will include spectral comparison with other low silica, feldspathic rocks to determine if there is an analog material that is consistent with both the VNIR and TIR observations. The geologic context of the Noachis units suggests volcanic, rather than plutonic origins, although shallow sills or subglacial eruptive units are possible. Previous experimental and modeling work by Nekvasil showed that feldspar-rich (up to 75 wt%), low-silica lavas may be produced from known Martian basalt by shallow crystallization of liquids residual to partial fractionation at the base of a thick Martian crust. The plagioclase fraction increases with both the extent and depth of fractionation. Given that Noachis Terra is associated with thick highlands crust, this mechanism would be a plausible explanation for feldspathic rock detections in this region.