EP13C-3539:
New observations of sinuous channels on the Amazon Fan

Monday, 15 December 2014
Roger D Flood, Stony Brook Univ, Marine Sciences Research Center, Stony Brook, NY, United States
Abstract:
High-sinuosity submarine fan channels on the Amazon Fan were first observed using long-range (GLORIA) side-scan sonar in 1982 and mapped in greater detail using multibeam sonar in 1984. These data have provided important insights into the nature and evolution of submarine channel systems. Subsequent studies on the Amazon Fan have focused on avulsion patterns, sedimentation patterns, fan growth and the climate record contained in fan sediments, and there has been relatively little additional work on the details of sinuous channel morphology. Channels on the Amazon Fan have been imaged by multibeam sonar on several occasions since 1984 during focused studies, regional mapping and ship transit. These multibeam data are being compiled and studied to better characterize these iconic channels. One observation of particular interest is that, on the Amazon Fan, channel-wall slumps appear to be more common than previously thought. Drilling of a cut-off meander during ODP Leg 155 on the Amazon Fan showed the presence of slumped material deeper in the channel suggesting that failure of the channel wall was in part responsible for the abandonment and filling of that meander loop. The failure also apparently created a sandy debris flow with clasts of fine-grained levee material transported in a sandy matrix. This sandy debris flow may have been able to flow along the channel and deposit at the seaward end where similar sediments can be found. Disturbed zones now visible on the inner walls of channels at several other places along the channels suggest that these kinds of inner-wall slumps may play important roles in channel evolution and fan growth. Channel-blocking slumps can isolate channel loops which can then fill with sandy sediments, and avulsions are likely if this kind of slump fills the channel. The failure of channel walls can also lead to new channel segments that tend to straighten the channel. Dramatic changes to the shape of the channel can likely lead to large and sudden changes in the planform shape of meanders farther down the channel. Thus while similarities in sinuosity patterns suggest that both submarine channels and river channels are being altered by repetitive flow events, channel-wall slumping in submarine channels may affect submarine channel evolution to a greater extent than similar events in rivers.