A24C-07:
Observations and Model Simulations of Orographic Mixed-Phase Clouds at Mountain Range Site

Tuesday, 16 December 2014: 5:45 PM
Olga Cassandra Henneberg, Jan Henneberger and Ulrike Lohmann, ETH Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
Abstract:
Aerosol-cloud interactions constitute the highest uncertainties in forcing estimation. Especially uncertainties due to mixed clouds (MPCs) have a large impact on the radiative balance and precipitation prediction. Due to Wegener-Bergeron-Findeisen-process (WBF) which describes glaciation of MPCs due to the lower saturation over ice than over water, MPCs are mostly expected as short lived clouds. In contrast to the theory of the WBF, in-situ measurements have shown that MPCs can persist over longer time. But only a small number of measurements of MPCs is available. In addition modeling studies about MPCs are difficult as their processes of the three-phase-system are on the micro scale and therefore not resolved in models. 

We present measurements obtained at the high-altitude research station Jungfraujoch (JFJ, 3580 m asl) in the Swiss Alps partly taken during the CLoud-Aerosol Interaction Experiments (CLACE). During the winter season, the JFJ has a high frequency of super-cooled clouds and is considered representative for being in the free troposphere. In-situ measurements of the microstructure of MPCs have been obtained with the digital imager HOLIMO, that delivers phase-resolved size distributions, concentrations, and water contents. The data set of MPCs at JFJ shows that for northerly wind cases partially-glaciated MPCs are more frequently observed than for southerly wind cases. The higher frequency of these intermediate states of MPCs suggests either higher updraft velocities, and therefore higher water-vapor supersaturations, or the absence of sufficiently high IN concentrations to quickly glaciate the MPC. 

Because of the limitation of in-situ information, i.e. point measurements and missing measurements of vertical velocities at JFJ, the mechanism of the long persistence of MPCs cannot be fully understood. Therefore, in addition to measurements we will investigate the JFJ region with a model study with the non-hydrostatic model COSMO-ART-M7. Combination of km-scale simulation with measurements allows to systematically study the effect of vertical velocity and temperatures on MPCs at JFJ, the synoptic conditions, origins of air masses, aerosol and IN concentrations. Comparison between in-situ measurements will also help to improve parametrization of microphysical processes in the model.