H41D-0851:
Attribution of hydrologic trends using integrated hydrologic and economic models
Thursday, 18 December 2014
Marco P Maneta, Douglas Richard Brugger and Nicholas L Silverman, University of Montana, Missoula, MT, United States
Abstract:
Hydrologic change has been detected in many regions of the world in the form of trends in annual streamflows, varying depths to the regional water table, or other alterations of the hydrologic balance. Most models used to investigate these changes implement sophisticated descriptions of the physical system but use simplified descriptions of the socioeconomic system. These simplifications come in the form of prescribed water diversions and land use change scenarios, which provide little insight into coupled natural-human systems and have limited predictive capabilities. We present an integrated model that adds realism to the description of the hydrologic system in agricultural regions by incorporating a component that updates the allocation of land and water to crops in response to hydroclimatic (water available) and economic conditions (prices of commodities and agricultural inputs). This component assumes that farmers allocate resources to maximize their net revenues, thus justifying the use of optimality conditions to constrain the parameters of an empirical production function that captures the economic behavior of farmers. Because the model internalizes the feedback between climate, agricultural markets, and farming activity into the hydrologic system, it can be used to understand to what extent human economic activity can exacerbate or buffer the regional hydrologic impacts of climate change in agricultural regions. It can also help in the attribution of causes of hydrologic change. These are important issues because local policy and management cannot solve climate change, but they can address land use and agricultural water use. We demonstrate the model in a case study.