B12B-06:
Linking SOM Content, Chemistry, and Decomposition: Complex Responses to Input Manipulation and Long-term Incubation

Monday, 15 December 2014: 11:35 AM
Lorien Lily Reynolds1, Malak Tfaily2, Kristyn Roscioli3, Kate Lajtha4, Richard Bowden5, Bart R Johnson6 and Scott D Bridgham1, (1)University of Oregon, Eugene, OR, United States, (2)Pacific Northwest National Lab, Richland, WA, United States, (3)Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA, United States, (4)Oregon State University, Corvallis, OR, United States, (5)Allegheny College, Department of Environmental Science, Meadville, PA, United States, (6)University of Oregon, Landscape Architecture, Eugene, OR, United States
Abstract:
The mechanisms of soil organic matter (SOM) protection and their relationship with carbon inputs and decomposition are poorly understood. We used Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Fourier transform infrared spectroscopy (FTIR) to characterize SOM in soils exposed to litter-input exclusion or addition for 20 years, and subsequently incubated for more than a year. Our aim was to describe shifts in SOM content and chemical composition due to the input manipulation and degree of decomposition, particularly in the light (i.e., free particulate, younger) versus the heavy (mineral-adsorbed, older) fractions of SOM, and to link these shifts to carbon mineralization rates.

The soils were collected from a deciduous hardwood forest in Meadville, PA, one of the Detritus and Input Removal Treatment (DIRT) sites. They were subjected to either litter and root exclusion (NI), double litter (DL), or ambient inputs (CO) for 20 years and subsequently incubated at 35oC for 525 days. Soils from the beginning and end of the incubation were divided into light and heavy fractions using 1.8 g cm-3 sodium polytungstate. Bulk CO soils and heavy fractions of NI, DL, and CO soil were analyzed with FTICR-MS, while light and heavy fractions were analyzed with FTIR.

Twenty years of input exclusion decreased the mineralization rate, the total carbon respired, and total carbon content, though litter addition had no significant effect (NI < CO = DL). The FTICR-MS and FTIR data reveal substantial differences in SOM chemistry among DIRT treatments, fractions, and before and after incubation. CO contained several classes of compounds, including alcohols and phenols, not detected in either DL or NI soils, and all samples showed an enrichment in aromatics between the light and heavy fractions. The heavy fraction DL soils were proportionally enriched in lipids compared to NI and CO soils, and these lipids were preferentially mineralized during incubation. Heavy fraction CO and NI soils were similar initially, though CO soil lost primarily lipids, while NI soil lost unsaturated hydrocarbons and proteins. These results indicate the complex interrelationships between litter inputs and soil carbon content, chemistry, and SOM decomposition.