Modeling of Biomass Burning Aerosols over Southeastern United States

Wednesday, 17 December 2014
Cesunica Ivey, David Lavoue, Aika Davis, Yongtao Hu and Armistead Russell, Georgia Institute of Technology Main Campus, Atlanta, GA, United States
The U.S. National Emissions Inventory (NEI) for area sources such as biomass burning have uncertainties in temporal variability due to temporal averaging of the final inventories. The Fire Inventory of NCAR (FINN) provides detailed emissions estimates of gaseous and aerosol emissions from individual wildland, prescribed, and open fires over North America. In an effort to improve PM2.5 source impact estimates from fire activity over Southeastern U.S., the Community Multi-Scale Air Quality (CMAQ) model is used to simulate PM2.5 concentrations and source impacts for fires during May of 2012. In this work, FINN emissions estimates replace NEI fire emissions estimates for more precise estimation of fire impact on air quality. Modeled results are evaluated using observations from monitoring networks such as the Chemical Speciation Network and the Southeastern Aerosol Research and Characterization network. Aircraft measurements from the Deep Convective Cloud and Chemistry (DC3) flight campaign and the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) are also used to evaluate modeled simulations of aerosol concentrations.