PP13A-1397:
Carbon-Isotope Chemostratigraphy of the Yellow Cat Member of the Cretaceous Cedar Mountain Formation, Utah

Monday, 15 December 2014
Garrett Hatzell1, Celina A Suarez1, Marina B Suarez2, Jose Salazar-Verdin2, Aisha H Al-Suwaidi3 and James I Kirkland4, (1)University of Arkansas, Fayetteville, AR, United States, (2)Dept Geological Sciences, San Antonio, TX, United States, (3)Petroleum Institute, Petroleum Geoscience Dept., Abu Dhabi, United Arab Emirates, (4)Utah Geological Survey, Salt Lake City, UT, United States
Abstract:
Paleosols and lacustrine sediments of the Yellow Cat Member (YCM), Cedar Mountain Formation (CMF), Eastern Utah were collected at the “Lake Madsen” (a dominantly lacustrine section) and Doelling’s Bowl (a mixed lacustrine/ palustrine/ paleosol section) and analyzed for bulk organic carbon isotopes (δ13Corg) . The YCM is thought to span the Barremian to Aptian based on dinosaur faunal assemblages. Correlation with distinct carbon isotope excursions (CIE) specifically those associated with the Selli Event or OAE 1a would allow insight into the response of terrestrial ecosystems to C-cycle perturbations during the Aptian, and may improve chronostratigraphy. Lake Madsen data ranges between a minimum of -28.5‰ and a maximum of -21.4‰ with an average of ~ -25‰ and shows a stepped negative isotope excursion of -3‰., with three distinct negative steps starting ~ 7.5 m above the Jurassic Morrison Formation and an intervening large positive excursion ~ 4.5 m from the base of the Poison Strip Sandstone (~119Ma) Member of the CMF. Doelling’s Bowl data spans a longer vertical distance and ranges from a minimum of -29.0‰ to a maximum of -25.7‰, averages -27.7‰ and is somewhat cyclic in nature. δ13Corg chemostratigraphic profile for Doelling’s Bowl poorly correlates to the Lake Madsen section, likely due to recycling of organic C and wet/dry cycles of the palustrine environment. Correlation of the Lake Madsen section to marine δ13CCO3 curve from Cismon Valley of the southern Alps indicates the lower Aptian C-isotope excursions C1 to C6, with the distinctive C3 negative CIE occur at the top of the Yellow Cat Member, therefore documenting a terrestrial manifestation of the CIE associated with OAE1a – Selli Event. This suggests the age of the majority of the Yellow Cat Member is Barremian to lower Aptian and the Barremian-Aptian boundary occurs at the top of the Member ~ 25cm below the base of the Poison Strip Sandstone. Further isotopic analysis of vertebrate fossils in addition to other proxies may help determine if these excursions are correlated to changes in paleoenvironment, paleoclimate and paleoecology.