H41B-0808:
Trends and Patterns of Change in Temperature and Evaporation
Thursday, 18 December 2014
Elisa Ragno, University of California Irvine, Irvine, CA, United States and Amir AghaKouchak, University of California Irvine, Civil and Environmental Engineering, Irvine, CA, United States
Abstract:
Global mean monthly temperature has increased substantially in the past decades. On the other hand, there are contradictory reports on the response of the potential evaporation to a warming climate. In this study, ground based observations of temperature, and direct measurements of pan potential evaporation are evaluated across the United States. Furthermore, empirical simulations of the potential evaporation have been evaluated against observations. The results show that empirical (e.g., Thornthwaite method) estimates of the potential evapotranspiration show trends inconsistent with the ground-based observations. In fact, while temperature data show a significant upward trend across most of the United States, ground-based evaporation data in most locations do not exhibit a statistically significant trend. Empirical methods of potential evaporation estimation, including the Thornthwaite method, show trends similar to temperature. The primary reason is that many of the empirical approaches are dominated by temperature. Currently, empirical estimates of potential evaporation are widely used for numerous applications including water stress analysis. This indicates that using empirical estimates of potential estimation for irrigation water demand estimation and also drought assessment could lead to unrealistic results.