Tempest: Mesoscale test case suite results and the effect of order-of-accuracy on pressure gradient force errors

Tuesday, 16 December 2014
Jorge Eduardo Guerra, University of California Davis, Davis, CA, United States and Paul Aaron Ullrich, Univ California Davis, Fremont, CA, United States
Tempest is a new non-hydrostatic atmospheric modeling framework that allows for investigation and intercomparison of high-order numerical methods. It is composed of a dynamical core based on a finite-element formulation of arbitrary order operating on cubed-sphere and Cartesian meshes with topography. The underlying technology is briefly discussed, including a novel Hybrid Finite Element Method (HFEM) vertical coordinate coupled with high-order Implicit/Explicit (IMEX) time integration to control vertically propagating sound waves. Here, we show results from a suite of Mesoscale testing cases from the literature that demonstrate the accuracy, performance, and properties of Tempest on regular Cartesian meshes. The test cases include wave propagation behavior, Kelvin-Helmholtz instabilities, and flow interaction with topography. Comparisons are made to existing results highlighting improvements made in resolving atmospheric dynamics in the vertical direction where many existing methods are deficient.