A33G-3270:
Constraining ammonia dairy emissions during NASA DISCOVER-AQ California: surface and airborne observation comparisons with CMAQ simulations
Wednesday, 17 December 2014
David J Miller1, Zhen Liu2, Kang Sun3, Lei Tao3, John B Nowak4, Ray Bambha2, Hope A Michelsen2 and Mark A Zondlo3, (1)Brown University, Providence, RI, United States, (2)Sandia National Laboratories, Livermore, CA, United States, (3)Princeton University, Princeton, NJ, United States, (4)Aerodyne Research Inc., Billerica, MA, United States
Abstract:
Agricultural ammonia (NH3) emissions are highly uncertain in current bottom-up inventories. Ammonium nitrate is a dominant component of fine aerosols in agricultural regions such as the Central Valley of California, especially during winter. Recent high resolution regional modeling efforts in this region have found significant ammonium nitrate and gas-phase NH3 biases during summer. We compare spatially-resolved surface and boundary layer gas-phase NH3 observations during NASA DISCOVER-AQ California with Community Multi-Scale Air Quality (CMAQ) regional model simulations driven by the EPA NEI 2008 inventory to constrain wintertime NH3 model biases. We evaluate model performance with respect to aerosol partitioning, mixing and deposition to constrain contributions to modeled NH3 concentration biases in the Central Valley Tulare dairy region. Ammonia measurements performed with an open-path mobile platform on a vehicle are gridded to 4 km resolution hourly background concentrations. A peak detection algorithm is applied to remove local feedlot emission peaks. Aircraft NH3, NH4+ and NO3- observations are also compared with simulations extracted along the flight tracks. We find NH3 background concentrations in the dairy region are underestimated by three to five times during winter and NH3 simulations are moderately correlated with observations (r = 0.36). Although model simulations capture NH3 enhancements in the dairy region, these simulations are biased low by 30-60 ppbv NH3. Aerosol NH4+ and NO3- are also biased low in CMAQ by three and four times respectively. Unlike gas-phase NH3, CMAQ simulations do not capture typical NH4+ or NO3- enhancements observed in the dairy region. In contrast, boundary layer height simulations agree well with observations within 13%. We also address observational constraints on simulated NH3 deposition fluxes. These comparisons suggest that NEI 2008 wintertime dairy emissions are underestimated by a factor of three to five. We test sensitivity to emissions by increasing the NEI 2008 NH3 emissions uniformly across the dairy region and evaluate the impact on modeled concentrations. These results are applicable to improving predictions of ammoniated aerosol loading and highlight the value of mobile platform spatial NH3 measurements to constrain emission inventories.