A rapid estimation of tsunami run-up based on finite fault models

Monday, 15 December 2014
Jaime Campos1, Mauricio Antonio Fuentes2, Gavin P Hayes3, Sergio E Barrientos1 and Sebastian Riquelme1, (1)University of Chile, Santiago, Chile, (2)Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile, (3)U.S. Geological Survey, Denver, CO, United States
Many efforts have been made to estimate the maximum run-up height of tsunamis associated with large earthquakes. This is a difficult task, because of the time it takes to construct a tsunami model using real time data from the source. It is possible to construct a database of potential seismic sources and their corresponding tsunami a priori. However, such models are generally based on uniform slip distributions and thus oversimplify our knowledge of the earthquake source. Instead, we can use finite fault models of earthquakes to give a more accurate prediction of the tsunami run-up.

Here we show how to accurately predict tsunami run-up from any seismic source model using an analytic solution found by Fuentes et al, 2013 that was especially calculated for zones with a very well defined strike, i.e, Chile, Japan, Alaska, etc. The main idea of this work is to produce a tool for emergency response, trading off accuracy for quickness. Our solutions for three large earthquakes are promising. Here we compute models of the run-up for the 2010 Mw 8.8 Maule Earthquake, the 2011 Mw 9.0 Tohoku Earthquake, and the recent 2014 Mw 8.2 Iquique Earthquake. Our maximum rup-up predictions are consistent with measurements made inland after each event, with a peak of 15 to 20 m for Maule, 40 m for Tohoku, and 2,1 m for the Iquique earthquake. Considering recent advances made in the analysis of real time GPS data and the ability to rapidly resolve the finiteness of a large earthquake close to existing GPS networks, it will be possible in the near future to perform these calculations within the first five minutes after the occurrence of any such event. Such calculations will thus provide more accurate run-up information than is otherwise available from existing uniform-slip seismic source databases.