A54F-06:
Calibration Performance and Capabilities of the New Compact Ocean Wind Vector Radiometer System

Friday, 19 December 2014: 5:30 PM
Shannon Thomas Brown1, Paolo Focardi1, Amarit Kitiyakara1, Frank Maiwald2, Oliver Montes2, Sharmila Padmanabhan1, Richard Redick2, Damon Russell3 and James Wincentsen3, (1)NASA Jet Propulsion Laboratory, Pasadena, CA, United States, (2)Jet Propulsion Laboratory, Pasadena, CA, United States, (3)Jet Propulsion Lab, Pasadena, CA, United States
Abstract:
The paper describes performance and capabilities of a new satellite conically imaging microwave radiometer system, the Compact Ocean Wind Vector Radiometer (COWVR), being built by the Jet Propulsion Laboratory (JPL) for an Air Force demonstration mission. COWVR is an 18-34 GHz fully polarimetric radiometer designed to provide measurements of ocean vector winds with an accuracy that meets or exceeds that provided by WindSat, but using a simpler design which has both calibration and cost advantages.

Heritage conical radiometer systems, such as WindSat, AMSR, GMI or SSMI(S), all have a similar overall architecture and have exhibited significant intra-channel and inter-sensor calibration biases, due in part to the relative independence of the radiometers between the different polarizations and frequencies in the system. The COWVR system uses a broadband compact hybrid combining architecture and Electronic Polarization Basis Rotation to minimize the number of free calibration parameters between polarization and frequencies, as well as providing a definitive calibration reference from the modulation of the mean polarized signal from the Earth. This second calibration advantage arises because the sensor modulates the incoming polarized signal at the input antenna aperture in a known way based only on the instrument geometry which forces relative calibration consistency between the polarimetric channels of the sensor and provides a gain and offset calibration independent of a model or other ancillary data source, which has typically been a weakness in the calibration and inter-calibration of heritage microwave sensors.

This paper will give a description of the COWVR instrument and an overview of the technology demonstration mission. We will discuss the overall calibration approach for this system, its advantages over existing systems and how many of the calibration issues that impact existing satellite radiometers can be eliminated in future operational systems based on this design. COWVR is currently in flight fabrication at JPL, having successfully passed its Critical Design Review in June 2014, and will be flight ready in September 2015 with launch no earlier than 2016.