T33B-4683:
Linking Tectonics and Surface Processes through SNAC-CHILD Coupling: Preliminary Results Towards Interoperable Modeling Frameworks

Wednesday, 17 December 2014
Eunseo Choi, University of Memphis, Center for Earthquake Research and Information, Memphis, TN, United States, Anna Kelbert, Oregon State University, Corvallis, OR, United States and Scott Dale Peckham, University of Colorado, Boulder, CO, United States
Abstract:
We demonstrate that code coupling can be an efficient and flexible method for modeling complicated two-way interactions between tectonic and surface processes with SNAC-CHILD coupling as an example. SNAC is a deep earth process model (a geodynamic/tectonics model), built upon a scientific software framework called StGermain and also compatible with a model coupling framework called Pyre. CHILD is a popular surface process model (a landscape evolution model), interfaced to the CSDMS (Community Surface Dynamics Modeling System) modeling framework. We first present proof-of-concept but non-trivial results from a simplistic coupling scheme. We then report progress towards augmenting SNAC with a Basic Model Interface (BMI), a framework-agnostic standard interface developed by CSDMS that uses the CSDMS Standard Names as controlled vocabulary for model communication across domains. Newly interfaced to BMI, SNAC will be easily coupled with CHILD as well as other BMI-compatible models. In broader context, this work will test BMI as a general and easy-to-implement mechanism for sharing models between modeling frameworks and is a part of the NSF-funded EarthCube Building Blocks project, "Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks.”