A43C-3273:
Investigating the constraint imposed by column averaged PBL CO2 data within an atmospheric inversion framework

Thursday, 18 December 2014
Andrew E Schuh1, Stephan R Kawa2, A Scott Denning1, David F Baker1 and Anand K Ramanathan3, (1)Colorado State University, Fort Collins, CO, United States, (2)NASA Goddard SFC, Greenbelt, MD, United States, (3)Earth System Science Interdisciplinary Center, COLLEGE PARK, MD, United States
Abstract:
It was initially hoped that the proposed Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) NASA mission could rectify diurnal fluxes through it's ability to measure during both days and nights. However, initial simulation results (Kawa et al 2010) showed limited skill at identifying diurnal differences in fluxes. We investigate the possibility of (1) supplementing ASCENDS with well chosen in-situ surface sites and/or (2) adding distinct column measurements for the PBL and free troposphere into the inversion framework to determine the impact on recovering net ecosystem exchange (NEE), as well as distinct gross primary production (GPP) and respiration fluxes. In particular, we run forward simulations and inversions with distinct respiration and GPP fluxes calculated from the SiB model (Baker et al 2008) and test the ability of an EnKF based inversion framework to recover a hypothetical tropical CO2 fertilization effect resulting in enhanced GPP.

Baker, I. T.; Prihodko, L.; Denning, A. S.; Goulden, M.; Miller, S. & da Rocha, H. R. (2008), 'Seasonal drought stress in the Amazon: Reconciling 3 models and observations', Journal of Geophysical Research 113.

Kawa, S. R.; MAO, J.; ABSHIRE, J. B.; J., C. G.; SUN, X. & WEAVER, C. J. (2010), 'Simulation studies for a space-based CO2 lidar mission.', Tellus B 62, 759-769.