New Solar Soft X-ray Observations from the X123 Spectrometer

Friday, 19 December 2014
Amir Caspi1, James M McTiernan2, Harry P Warren3 and Thomas N Woods1, (1)Laboratory for Atmospheric and Space Physics, Boulder, CO, United States, (2)Space Sciences Laboratory, Berkeley, CA, United States, (3)Naval Research Lab DC, Washington, DC, United States
The Amptek X123 is a new soft X-ray photon-counting spectrometer, based on a silicon drift detector with integrated thermoelectric cooler, vacuum housing, and multi-channel analyzer (including pulse pile-up rejection), capable of measuring solar line and continuum emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution. It was flown on two recent SDO/EVE sounding rocket calibration underflights, is the primary science instrument on the upcoming Miniature X-ray Solar Spectrometer (MinXSS) NASA CubeSat, and is part of the proposed instrument payload for the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) mission concept. With the best resolution yet obtained from a broadband X-ray spectrometer, the X123 will enable new studies of plasma heating and particle acceleration, during flares and quiescent periods, and help to fill a crucial observational gap from ~0.2 to ~1.2 keV, not currently measured by existing instruments but critical for understanding solar-driven dynamics in Earth's upper atmosphere (ionosphere, thermosphere, mesosphere).

We present results from a new analysis of X123 data obtained from the SDO/EVE rocket flights. In preparation for future MinXSS and CubIXSS data, we adapt a recently-developed technique combining EUV and X-ray spectra from SDO/EVE and RHESSI, respectively, to obtain a self-consistent differential emission measure (DEM) over the full range of coronal temperatures, ~2-50 MK. Including the X123 rocket X-ray spectra, we apply the adapted technique to examine both the coronal DEM and composition during quiescent (non-flaring) times with varying activity levels, obtaining constraints on the high-temperature extent of the quiescent DEM, the elemental abundances, and any potential non-thermal emission, and use the observations to extrapolate the spectrum to the poorly-observed ~0.2-1.2 keV band. We compare these results with those from a parallel technique using SDO/AIA imaging data. We discuss the implications for coronal plasma heating and the expectations for future observations from MinXSS and CubIXSS.