GC21D-0587:
Natural and anthropogenic change in the morphology and connectivity of tidal channels of southwest Bangladesh

Tuesday, 16 December 2014
Carol Wilson1, Steven Lee Goodbred Jr1, Leslie Wallace Auerbach1, Kazi Rifat Ahmed2, Chris Small3 and Sarah E Sams1, (1)Vanderbilt University, Earth & Environmental Sciences, Nashville, TN, United States, (2)Khulna University, Department of Environmental Science, Khulna, Bangladesh, (3)Columbia University of New York, Lamont Doherty Earth Observatory, Palisades, NY, United States
Abstract:
Over the last century, land use changes in the Ganges-Brahmaputra tidal delta have transformed >5000 km2 of intertidal mangrove forest to densely inhabited, agricultural islands that have been embanked to protect against tides and storm surges (i.e., polders). More recently, the conversion of rice paddies to profitable shrimp aquaculture has become increasingly widespread. Recent field studies documented that poldering in southwest Bangladesh has resulted in an elevation deficit relative to that of the natural mangrove forests and mean high water (MHW). The offset is a function of lost sedimentation, enhanced compaction, and an effective rise in MHW from tidal amplification. The morphologic adjustment of the tidal channel network to these perturbations, however, has gone largely undocumented. One effect has been the shoaling of many channels due to decreases in fluvial discharge and tidal prism. We document a previously unrecognized anthropogenic component: the widespread closure of large conduit tidal channels for land reclamation and shrimp farming.

GIS analysis of historical Landsat and Google Earth imagery within six 1000 km2 study areas reveals that the tidal network in the natural Sundarbans mangrove forest has remained relatively constant since the 1970s, while significant changes are observed in human-modified areas. Construction of the original embankments removed >1000 km of primary tidal creeks, and >80 km2 of land has been reclaimed outside of polders through the closure of formerly active tidal channels (decrease in mean channel width from 256±91 m to 25±10 m). Tidal restriction by large sluice gates is prevalent, favoring local channel siltation. Furthermore, severing the intertidal platform and large conduit channels from the tidal network has had serious repercussions, such as increased lateral migration and straightening of the remaining channels. Where banklines have eroded, the adjacent embankments appear to be more vulnerable to failure, as observed from the effects of Cyclone Aila in 2009: multiple embankments failed at sites of recent channel migration and impounded primary creeks.

Although global climate change and sea-level rise is a major concern for this low-lying delta, this study highlights the need to understand the repercussions of anthropogenic modification as well.