H33C-0839:
A Bayesian Chance-Constrained Method for Hydraulic Barrier Design Under Model Structure Uncertainty
Wednesday, 17 December 2014
Nima Chitsazan, Hai V Pham and Frank T-C Tsai, Louisiana State University, Baton Rouge, LA, United States
Abstract:
The groundwater community has widely recognized the model structure uncertainty as the major source of model uncertainty in groundwater modeling. Previous studies in the aquifer remediation design, however, rarely discuss the impact of the model structure uncertainty. This study combines the chance-constrained (CC) programming with the Bayesian model averaging (BMA) as a BMA-CC framework to assess the effect of model structure uncertainty in the remediation design. To investigate the impact of the model structure uncertainty on the remediation design, we compare the BMA-CC method with the traditional CC programming that only considers the model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from saltwater intrusion in the “1,500-foot” sand and the “1-700-foot” sand of the Baton Rouge area, southeastern Louisiana. To address the model structure uncertainty, we develop three conceptual groundwater models based on three different hydrostratigraphy structures. The results show that using the traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from connector wells is higher than the total pumpage of the protected public supply wells. While reducing injection rate can be achieved by reducing reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station is not economically attractive.