H32F-04:
Geofluid Dynamics of Faulted Sedimentary Basins

Wednesday, 17 December 2014: 11:05 AM
Grant Garven, Tufts University, Earth and Ocean Sciences, Medford, MA, United States, Byeongju Jung, Uppsala University, Earth Sciences, Uppsala, Sweden and James R Boles, University of California Santa Barbara, Earth Sciences, Santa Barbara, CA, United States
Abstract:
Faults are known to affect basin-scale groundwater flow, and exert a profound control on petroleum migration/accumulation, the PVT-history of hydrothermal fluids, and the natural (submarine) seepage from offshore reservoirs. For example, in the Santa Barbara basin, measured gas flow data from a natural submarine seep area in the Santa Barbara Channel helps constrain fault permeability k ~ 30 millidarcys for the large-scale upward migration of methane-bearing formation fluids along one of the major fault zones. At another offshore site near Platform Holly, pressure-transducer time-series data from a 1.5 km deep exploration well in the South Ellwood Field demonstrate a strong ocean tidal component, due to vertical fault connectivity to the seafloor. Analytical solutions to the poroelastic flow equation can be used to extract both fault permeability and compressibility parameters, based on tidal-signal amplitude attenuation and phase shift at depth. These data have proven useful in constraining coupled hydrogeologic 2-D models for reactive flow and geomechanical deformation.

In a similar vein, our studies of faults in the Los Angeles basin, suggest an important role for the natural retention of fluids along the Newport-Inglewood fault zone. Based on the estimates of fault permeability derived above, we have also constructed new two-dimensional numerical simulations to characterize large-scale multiphase flow in complex heterogeneous and anisotropic geologic profiles, such as the Los Angeles basin. The numerical model was developed in our lab at Tufts from scratch, and based on an IMPES-type algorithm for a finite element/volume mesh. This numerical approach allowed us model large differentials in fluid saturation and relative permeability, caused by complex geological heterogeneities associated with sedimentation and faulting. Our two-phase flow models also replicated the formation-scale patterns of petroleum accumulation associated with the basin margin, where deep faults resulted in stacked petroleum reservoirs along the Newport-Inglewood Fault, as deep geofluids migrated out of the basin to the Palo Verde Peninsula. Recent isotope data collected by our group also verify fault connectivity at the deep crustal scale.