A43H-3388:
Impact of Mixing State on Anthropogenic Aerosol Radiative Forcing and Associated Climate Response

Thursday, 18 December 2014
Alexander Avramov1, Ho-Jeong Shin2 and Chien Wang1, (1)MIT, Cambridge, MA, United States, (2)KIOST, Seoul, South Korea
Abstract:
Atmospheric aerosols affect Earth’s radiation balance directly by scattering and absorbing solar radiation and, indirectly, by changing the microphysical structure, lifetime and spatial extent of clouds. The aerosol mixing state to a large extent determines not only their optical properties (direct effect) but also their ability to serve as cloud condensation nuclei or ice nuclei (indirect effect). Results from previous research have highlighted the importance of the aerosol mixing assumptions in radiative forcing estimates in model simulations. Here we take a step further to analyze the differences in associated climate responses, using a multimodal, size- and mixing-dependent aerosol model (MARC) incorporated within the Community Earth System Model (CESM). The new model allows for a detailed representation of aerosol-radiation and aerosol-cloud interactions by including an improved treatment of aerosol mixing state and composition. First, we estimate and compare the magnitudes of direct and indirect forcing of anthropogenic aerosols under different mixing assumptions. We then carry out several century-long fully-coupled climate simulations designed to isolate the climate responses to direct and indirect forcings under the same aerosol mixing assumptions. In our analysis, we specifically focus on the following three climate response components: 1) cloud distribution and coverage; 2) precipitation amount and distribution; and 3) changes in circulation patterns.