Study of Hydrothermal Mineralization in 2013 Drill Core from Hawaii Island

Thursday, 18 December 2014
Nicole C Lautze, University of Hawaii, Honolulu, HI, United States, Wendy Marie Calvin, Univ of Nevada Reno, Reno, NV, United States, Joseph Moore, Energy & Geoscience Institute, Salt Lake City, UT, United States, ERic Haskins, University of Hawaii, Hilo, Hilo, HI, United States and Donald Mattson Thomas, CSAV, Hilo, HI, United States
The Humu’ula Groundwater Research Project (HGRP) drilled a continuously-cored hole to nearly 2 km depth near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100 C. A study is underway to characterize hydrothermal (secondary) mineralization in the core at depths below ~ 1 km. Secondary mineralization can indicate the presence, chemistry, and temperature of hydrothermal fluids, therein helping to characterize a present and/or past geothermal system.

To date, the study is two pronged. In collaboration with University Nevada Reno (UNR) we used an Analytical Spectral Devices (ASD) FieldSpec instrument to obtain nearly 800 spectra from core depths spanning 3190 to 5785 feet. This device has a 2 cm contact probe that measures from 0.4 to 2.5 mm, and has been used successfully by UNR to identify depth-associated changes in alteration mineralogy and zoning in drill core from other pilot studies. The spectra indicate that rocks above a depth of ~1 km are only weakly altered. At greater depths to the base of the well, chlorite, possibly with some mica, and zeolites are common. The majority of zeolites are spectrally similar to each other at these wavelengths, however analcime and natrolite are uniquely identified in some sections. Epidote was not observed. The secondary mineral assemblages suggest that the alteration was produced by moderate temperature neutral pH fluids.

Here, we used the spectral data as a survey tool to help identify and select over 20 sections of core for sampling and more detailed mineralogical analysis using traditional X-Ray Diffraction (XRD) and petrographic techniques, conducted in collaboration with University of Utah. This presentation will include mineral maps with depth and results of the petrographic analyses.