EP21A-3518:
Thermochronologic constraints on the Miocene slip history of the South Tibetan detachment system in the Everest region, central Himalaya
Tuesday, 16 December 2014
Mary Schultz, Kip V Hodges, Matthijs C Van Soest and Jo-Anne Wartho, Arizona State University, Tempe, AZ, United States
Abstract:
North-dipping, low-angle normal faults of the South Tibetan detachment system (STDS) can be traced for a distance of more than 2000 km along strike and represent an important tectonic characteristic of the Miocene Himalayan-Tibetan orogenic system. Nowhere is the STDS better exposed than the N-S–trending Rongbuk Valley in southern Tibet, where it can be traced down dip from the summit of Everest for a distance of over 30 km before disappearing beneath the valley floor. This places a minimum constraint on Miocene displacement on the feature in this area, but some research groups have suggested ~200 km of displacement based on the difference in metamorphic pressures across the STDS and the very low (< 15˚) primary dip of the structure. We are exploring this issue further using developing (U-Th)/He and 40Ar/39Ar datasets from deformed footwall sillimanite gneisses and leucogranites. Data obtained thus far indicate relatively rapid cooling of the footwall after the intrusion of deformed leucogranites at ca. 16.7 Ma to muscovite 40Ar/39Ar closure temperatures (ca. 15.5-14.2 Ma) and zircon (U-Th)/He closure temperatures (ca. 14.5-11 Ma). We attribute this cooling to tectonic denudation related to ca. 16 Ma STDS slip. Although the (U-Th)/He systematics of apatites from these rocks is complex, our current interpretation of available data places cooling through the ca. 75˚C closure isotherm at ca. 8-9 Ma, which would suggest a significant reduction in cooling rate that is observed in our inverse model runs of the 1D program, HeFTy. Ongoing analyses of footwall samples from ~8 km to the north of our Rongbuk sample localities in the Ra Chu river valley will greatly strengthen our datasets. With the Ra Chu analyses, our datasets will constrain the cooling history of the footwall for more than 20 km perpendicular to the strike of the detachment. Our presentation will also incorporate results from the program Pecube that will contribute to our calculation of the slip rate by specifying the appropriate exhumation rate.