P33A-4026:
Fresh Shallow Valleys (FSVs) in Northern Arabia Terra, Mars

Wednesday, 17 December 2014
Sharon A. Wilson1,2, Alan D Howard2 and Jeffrey M Moore3, (1)Smithsonian Inst--CEPS, Washington, DC, United States, (2)University of Virginia Main Campus, Charlottesville, VA, United States, (3)NASA Ames Research Center, Moffett Field, CA, United States
Abstract:

Fresh Shallow Valleys (FSVs) on Mars are part of a growing inventory of post-Noachian landforms that may be related to late, widespread aqueous activity that occurred during a period once thought to be less favorable for precipitation and runoff. Constraining the source, magnitude, timing and duration of FSVs will provide insight into the mechanism and extent of fluvial activity on Mars and the geologic and climatic environments in which they formed. Unlike the older Noachian-Hesperian valleys that are characterized by integrated, dissected and degraded networks that cover large spatial extents, FSVs are typically narrow, short or discontinuous valleys with low drainage densities. They are generally incised no more than a few decameters, slightly degraded at multi-meter scales, and cluster in the mid-latitudes (35-50° in both hemispheres). A high concentration of FSVs occurs in Northern Arabia Terra (~33°N, 8°E), a Noachian-aged landscape characterized by broad, irregular depressions. Many of the FSVs in this region are 150+ km long and some appear to cross depressions that were likely filled with ice or water at the time of formation. Examples of broad, flat floored FSVs with incised channels could either indicate a complex history of a single flow event or multiple flow events. The occurrence of “pollywogs,” fairly fresh, small (typically 2-10 km in diameter) craters with a single channel extending from the rim outward, implies overflow of the crater, the presence of a deep lake and the involvement of artesian groundwater flow. Roughly 25% of the FSVs in our northern Arabia Terra study region occur on relatively fresh crater ejecta, which may be related to formation age, topography, surface materials and (or) substrate. Ejecta with dense concentrations of FSVs average 25.5 km in diameter, have more degraded crater interiors, and well developed petal-like ejecta. Ejecta with sparse or no FSVs have radial ejecta with less distinct petals and are associated with smaller craters (16 km and 8 km in diameter, respectively) that have less degraded crater interiors. Crater statistics suggest ejecta with high concentrations of FSVs are relatively older than ejecta with sparse or no FSVs. The crater statistics also suggest the valleys formed in the mid-Hesperian to Early-Amazonian, coeval with the formation of large alluvial fans.