EP33A-3631:
Remobilization Rates and Cumulative Contributions of Floodplains and Legacy Sediments from Piedmont Tributaries

Wednesday, 17 December 2014
Mitchell Donovan, University of MD Baltimore County, Ellicott City, MD, United States, Andrew J Miller, UMBC, Baltimore, MD, United States, Matthew E. Baker, University of Maryland Baltimore County, Baltimore, MD, United States and Allen Gellis, USGS, Baltimore, MD, United States
Abstract:
The disparity between watershed erosion rates and downstream sediment delivery has been an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a frequent focus. In the Piedmont province of the eastern US, post-settlement upland deforestation and agricultural land use led to accumulation of thick packages of overbank sediment ("legacy deposits") in valley bottoms. Previous authors have argued that legacy sediment is a potentially important source of sediment being remobilized by lateral migration of channels. We seek to address 1) How rapidly sediment is remobilized from floodplains by channel migration and bank erosion, 2) the proportion of streambank sediment derived from legacy sediment, and 3) the potential contributions of net stream bank erosion and legacy sediments to downstream sediment yields within the Piedmont of Baltimore County, Maryland. We measured gross erosion and deposition rates over 45 years within the fluvial corridor along 30 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 by comparing channel and floodplain morphology from LiDAR-based digital elevation data collected in 2005 with channel positions recorded on 1:2400-scale topographic maps from 1959-1961. Measured deposition within channel and point bars accounted for an average of 46% (28-75%) of gross erosion, with deposition increasingly important in larger drainages. Legacy sediments accounted for 6-90% of bank erosion at individual study segments, represented about 60% of bank height at most exposures, and accounted for 57% of the measured gross erosion. Extrapolating the results indicated that first- and second-order streams account for 62% of total stream bank erosion from northern Baltimore County. After accounting for estimated redeposition, extrapolated net stream bank sediment yields (72 Mg/km2/yr) are equivalent to 70% of average Piedmont watershed yield (104 Mg/km2/yr) cited in studies by previous authors. The results suggest stream bank sediments are a large source of sediment from Piedmont tributaries to the Chesapeake Bay. It is important to note that upland erosion rates have been reported with equivalent and greater magnitude for forested and cropland areas within the Maryland Piedmont (Gellis et al. 2009; Smith et al. 2011).