MR42A-06:
Cyclic loading experiments to measure material response over a broad frequency range: from tickling of rocks to squeezing of moons

Thursday, 18 December 2014: 11:35 AM
Christine McCarthy, Columbia University - LDEO, Palisades, NY, United States, Yasuko Takei, University of Tokyo, Bunkyo-ku, Japan, Reid F Cooper, Brown Univ, Providence, RI, United States and Heather M Savage, Lamont-Doherty, Palisades, NY, United States
Abstract:
Seismology provides powerful methods for imaging the interior of the Earth, not only through differences in seismic velocities, but also through attenuation contrasts. As seismic waves travel through the Earth they are attenuated in accordance with the viscoelastic properties of the material through which they pass. With proper constraints, we will someday be able to use seismic attenuation data as a prospecting tool to determine the grain size, temperature, pressure, melt content, and water content of the material along the ray path. Furthermore, it should be possible to determine active deformation structure, such as crystallographic preferred orientations that form in response to far-field natural tectonic loading. Laboratory studies are striving to provide these needed constraints. Using analogues to mantle rock, we isolate and scrutinize the physics of how microstructural elements affect macroscopic properties of attenuation and steady-state viscosity. An organic analogue, borneol, was used to measure the effects of grain size, temperature, and melt content over a broad frequency range. In these experiments, grain boundary processes were found to play a major role. Polycrystalline ice, which can be considered a rock analogue, has been used to explore the effect of accumulated strain on attenuation, particularly in material that is actively deforming via dislocation creep. Here, defect concentration and substructure are important. I will discuss the use of cyclic loading experiments on borneol and on polycrystalline ice to probe material response from seismic to tidal frequencies, from 10 Hz to 10-4 Hz respectively. These experiments, then, inform our knowledge of viscoelastic behavior of geologic materials at not only seismic frequencies, but also the tidal forcing frequencies experienced by tidewater glaciers and icy satellites.