A suite of global reconstructed precipitation products and their error estimate by multivariate regression using empirical orthogonal functions: 1850-present

Monday, 15 December 2014
Samuel Shanpu Shen, San Diego State University, San Diego, CA, United States
This presentation describes a suite of global precipitation products reconstructed by a multivariate regression method using an empirical orthogonal function (EOF) expansion. The sampling errors of the reconstruction are estimated for each product datum entry. The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). The temporal resolution ranges from 5-day, monthly, to seasonal and annual. The Global Precipitation Climatology Project (GPCP) precipitation data from 1979-2008 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed in detail for different EOF modes. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction examples of 1983 El Niño precipitation and 1917 La Niña precipitation (Figure 1) demonstrate that the El Niño and La Niña precipitation patterns are well reflected in the first two EOFs.

The validation of our reconstruction results with GPCP makes it possible to use the reconstruction as the benchmark data for climate models. This will help the climate modeling community to improve model precipitation mechanisms and reduce the systematic difference between observed global precipitation, which hovers at around 2.7 mm/day for reconstructions and GPCP, and model precipitations, which have a range of 2.6-3.3 mm/day for CMIP5.

Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort between San Diego State University (Sam Shen, Nancy Tafolla, Barbara Sperberg, and Melanie Thorn) and University of Maryland (Phil Arkin, Tom Smith, Li Ren, and Li Dai) and supported in part by the U.S. National Science Foundation (Awards No. AGS-1015926 and AGS-1015957).