V41E-04:
Geologically Controlled Isotope-Time Patterns Reveal Early Differentiation and Crust Formation Processes

Thursday, 18 December 2014: 8:45 AM
Vickie C Bennett, Australian National University, Canberra, ACT, Australia and Allen P. Nutman, University of Wollongong, School of Earth and Environmental Sciences, Wollongong, Australia
Abstract:
The mechanisms of continental crust production and evolution in the early Earth remain controversial, as are questions of the relative roles of early differentiation versus subsequent tectonic procssing in creating Earth’s chemical signatures. Here we present geologic observations integrated with whole rock major, trace element and Sm-Nd isotopic signatures and combined with U-Pb and Lu-Hf isotopic compositions of zircon populations from the same rocks, from the most extensive early rock record comprising the 3.9 Ga to 3.6 Ga terranes of southwest Greenland. These data reveal repeated patterns of formation of juvenile TTG crust and associated mafic and ultramafic rocks in convergent margin settings followed by formation of more evolved granites [1]. Our new zircon Lu-Hf data from rare 3.6-3.7 Ga tonalites within the Itsaq Gneiss Complex, obtained from single component, non-migmatitic gneisses with simple zircon populations, limited within sample Hf isotopic variability and accurate U-Pb ages, now document extraction of juvenile tonalites from a near chondritic mantle source between 3.9 Ga and 3.6 Ga. The more evolved, granitic rocks in each area show slightly negative initial εHf in accord with crustal reworking of the older (3.8-3.9 Ga) gniesses. There is no evidence for Hadean material in the sources of the granitoids. The Hf isotope-time patterns are consistent with juvenile crust production from a mantle source that experienced only modest amounts of prior crustal extraction. They are distinct from those predicted by reprocessing of an enriched Hadean mafic crust, as has been proposed for this region [2] and for the source of the Hadean Jack Hills zircons [3]. The well-documented, time decreasing, positive 142Nd anomalies [e.g., 4] from these rocks are further evidence of crustal derivation from a convecting mantle source, rather than reworking of an enriched mafic lithosphere. The 143Nd isotopic –time patterns are more complex, reflecting the interplay between early Sm/Nd fractionation processes as required by the 142Nd data, juvenile crustal growth and in some cases geologic disturbance of the whole rock Sm-Nd system.

[1] Nutman, et al, (2013) Amer. Jour. Sci. 313, 877-911. [2] Naeraa et al.. (2012) Nature 485, 627-631. [3] Kemp et al., (2010) EPSL 296, 45-56. [4] Bennett et al., (20070 Science 318, 1907.