PP42C-05:
Comparison of the timings between abrupt climate changes in Greenland, Antarctica, China and Japan based on robust correlation using Lake Suigetsu as a template.

Thursday, 18 December 2014: 11:20 AM
Takeshi Nakagawa, Newcastle University, Newcastle Upon Tyne, United Kingdom; Ritsumeikan University, Kusatsu, Japan
Abstract:
High-resolution pollen-derived climate records from Lake Suigetsu varved sediment core were compared with climate archives from other regions and revealed a particular spatio-temporal structure of the monsoon climate change during so-called D-O events.

Leads and lags of the climate change between different regions hold the key to understand the climate system. However, robust assessment of the relative timing of the climate change is often very challenging because correlation of the climatic archives from different regions often has inevitable uncertainties. Greenland and Cariaco basin, for example, provide two of the most frequently sited palaeoclimatic proxy data representative of the high- and low-latitudinal Atlantic regions. However, robust correlation of the records from those regions is difficult because of the uncertainties in layer countings, lack of the radiocarbon age control from ice cores, marine reservoir age of the Cariaco sediments, and the absence of the tephra layers shared by both cites. Similarly, Speleothem and ice core records are not robustly correlated to each other, either for the dead carbon fraction in the speleothems and lack of reliable correlation markers. The generally accepted hypothesis of synchronous climate change between China and the Greenland is, therefore, essentially hypothetical.

Lake Suigetsu provides solution to this problem. The lake Suigetsu chronology is supposed to be coherent to the speleothems' U-Th age scale. Suigetsu's semi-continuous radiocarbon dataset, which constitutes major component of the IntCal13 radiocarbon calibration model, also provides opportunity to correlate lake Suigetsu and the Greenland and Antarctic ice cores using cosmogenic isotopes as the correlation key. Results of the correlation and timing comparison, which cast new lights to the mechanism of the monsoon change, will be presented.