SM44B-03:
Spontaneous Reconnection Onset in the Magnetotail: Kinetic and MHD Pictures

Thursday, 18 December 2014: 4:30 PM
Mikhail I. Sitnov and Viacheslav G Merkin, JHU/APL, Laurel, MD, United States
Abstract:
The mechanism of the reconnection onset in planetary magnetotails has been a topic of hot debate for more than three decades. At the kinetic level of description the key problem is a seemingly universal stability of the collisionless tearing mode when electrons are magnetized by the magnetic field normal to the current sheet. This effect can be eliminated in 2D equilibria with magnetic flux accumulated at the anti-sunward end of the tail. However, the resulting instability seen in 2D PIC simulations with open boundaries differs from the classical tearing mode because its main effect is the formation of dipolarization fronts, i. e., regions of an enhanced normal magnetic field rather than the reversal of its sign. Strong tailward gradients of the normal magnetic field characteristic of fronts suggest that they can be destroyed in 3D by buoyancy and flapping instabilities. However, 3D PIC simulations show that buoyancy and flapping motions can neither destroy nor change critically the near-2D picture of the front evolution, although they do significantly disturb it. Modeling and understanding of this kinetic picture of the reconnection onset in MHD terms is critically important for incorporating the explosive reconnection physics into global models of the magnetosphere and solar corona. A key to this has become the recognition that tail current sheets with accumulated flux regions can also be unstable with respect to an ideal analog of the tearing mode, which has a similar structure of the electromagnetic field and plasma perturbations but preserves the original magnetic field topology. MHD simulations with high Lundquist number confirm the existence of such “pseudo-tearing” instability regimes. Non-MHD effects, including different motions of electron and ion species as well as the ion Landau dissipation transform these ideal MHD motions into the tearing/slippage instability obtained in PIC simulations.