Leveraging Oceanic and Surface Intensive Field Campaign Data Sets for Validation and Improvement of Recent Hyperspectral IR Satellite Data Products

Monday, 15 December 2014: 2:40 PM
Everette Joseph1,2, Nicholas R Nalli3, Mayra I Oyola2, Vernon Morris2 and Ricardo Sakai2, (1)SUNY at Albany, Albany, NY, United States, (2)Howard University, Washington, DC, United States, (3)IMSG, Inc., Alexandria, VA, United States
An overview is given of research to validate or improve the retrieval of environmental data records (EDRs) from recently deployed hyperspectral IR satellite sensors such as Suomi NPP Cross-track Infrared Microwave Sounder Suite (CrIMSS). The effort centers around several surface field intensive campaigns that are designed or leveraged for EDR validation. These data include ship-based observations of upper air ozone, pressure, temperature and relative humidity soundings; aerosol and cloud properties; and sea surface temperature. Similar intensive data from two land-based sites are also utilized as well. One site, the Howard University Beltsville site, is at a single point location but has a comprehensive array of observations for an extended period of time. The other land site, presently being deployed by the University at Albany, is under development with limited upper air soundings but will have regionally distributed surface based microwave profiling of temperature and relative humidity on the scale of 10 - 50 km and other standard meteorological observations. Combined these observations provide data that are unique in their wide range including, a variety of meteorological conditions and atmospheric compositions over the ocean and urban-suburban environments. With the distributed surface sites the variability of atmospheric conditions are captured concurrently across a regional spatial scale.

Some specific examples are given of comparisons of moisture and temperature correlative EDRs from the satellite sensors and surface based observations. An additional example is given of the use of this data to correct sea surface temperature (SST) retrieval biases from the hyperspectral IR satellite observations due to aerosol contamination.