B44A-05:
The Importance of Explicitly Representing Soil Carbon with Depth over the Permafrost Region in Earth System Models: Implications for Atmospheric Carbon Dynamics at Multiple Temporal Scales between 1960 and 2300.

Thursday, 18 December 2014: 5:00 PM
Anthony David McGuire, University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK, United States
Abstract:
We conducted an assessment of changes in permafrost area and carbon storage simulated by process-based models between 1960 and 2300. The models participating in this comparison were those that had joined the model integration team of the Vulnerability of Permafrost Carbon Research Coordination Network (see http://www.biology.ufl.edu/permafrostcarbon/). Each of the models in this comparison conducted simulations over the permafrost land region in the Northern Hemisphere driven by CCSM4-simulated climate for RCP 4.5 and 8.5 scenarios. Among the models, the area of permafrost (defined as the area for which active layer thickness was less than 3 m) ranged between 13.2 and 20.0 million km2. Between 1960 and 2300, models indicated the loss of permafrost area between 5.1 to 6.0 million km2 for RCP 4.5 and between 7.1 and 15.2 million km2 for RCP 8.5. Among the models, the density of soil carbon storage in 1960 ranged between 13 and 42 thousand g C m-2; models that explicitly represented carbon with depth had estimates greater than 27 thousand g C m-2. For the RCP 4.5 scenario, changes in soil carbon between 1960 and 2300 ranged between losses of 32 Pg C to gains of 58 Pg C, in which models that explicitly represent soil carbon with depth simulated losses or lower gains of soil carbon in comparison with those that did not. For the RCP 8.5 scenario, changes in soil carbon between 1960 and 2300 ranged between losses of 642 Pg C to gains of 66 Pg C, in which those models that represent soil carbon explicitly with depth all simulated losses, while those that do not all simulated gains. These results indicate that there are substantial differences in responses of carbon dynamics between model that do and do not explicitly represent soil carbon with depth in the permafrost region. We present analyses of the implications of the differences for atmospheric carbon dynamics at multiple temporal scales between 1960 and 2300.