H23S-02:
Simulated Impacts of Emerald Ash Borer on Throughfall and Stemflow Inputs of Water and Nitrogen in Black Ash Wetlands in Northern Michigan
Tuesday, 16 December 2014: 2:00 PM
Thomas G Pypker1, Joshua Davis2, Matthew J Van Grinsven2, Nicholas William Bolton3, Joseph Shannon2, Randy K Kolka4, Jarrod Nelson2 and Joseph W. Wagenbrenner3, (1)Thompson Rivers University, Kamloops, BC, Canada, (2)Michigan Technological University, School of Forest Resources and Environmental Sciences, Houghton, MI, United States, (3)Michigan Technological University, Houghton, MI, United States, (4)USDA Forest Service, Grand Rapids, MN, United States
Abstract:
Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated (‘Control’), 3 stands had all the black ash trees manually girdled (‘Girdled’) and 3 had all the black ash trees felled by chainsaw (‘Clearcut’). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total inorganic-N deposition via throughfall. Despite the severity of the disturbance that resulted from the simulated EAB infestation, preliminary results suggest that that these wetlands may show some short-term resiliency to the impacts of ash mortality, resulting in relatively unchanged hydrologic and nutrient deposition regimes.