B52D-04:
Irrigation Strategies and Crop Breeding As Complementary Measures for Improved Water Management and Ecosystem Services
Friday, 19 December 2014: 11:05 AM
Giulia Vico1, Stefano Manzoni2, Martin Weih1 and Amilcare M Porporato3, (1)SLU Swedish University of Agricultural Sciences Uppsala, Uppsala, Sweden, (2)Stockholm University, Stockholm, Sweden, (3)Duke Univ, Durham, NC, United States
Abstract:
The projected population growth and changes in climate and dietary habits will further increase the pressure on water resources globally. Within precision farming, a host of technical solutions has been developed to reduce water consumption for agricultural uses. Examples are the shift from scheduled to demand-based irrigation and the use of sophisticated water distribution techniques. The next frontier for a more sustainable agriculture is the combination of reduced water requirements with enhanced ecosystem services. Currently, staple grains are obtained from annuals crops. Enhanced ecosystem services could be obtained shifting from annual to perennial crops, obtained by means of targeted breeding. In fact, perennial plants, with their continuous soil cover and the higher allocation of resources to the below ground, contribute to the reduction of soil erosion, water and nutrient losses, while enhancing carbon sequestration in the root zone. We explore here the implications for water management at the field- to farm-scale of both improved irrigation methods and targeted breeding. A probabilistic description of the soil water balance and crop development is employed to quantify water requirements and yields and their inter-annual variability, as a function of rainfall patterns, soil and crop features. Optimal irrigation strategies are thus defined in terms of maximization of yield and minimization of required irrigation volumes and their inter-annual variability. The probabilistic model is parameterized based on an extensive meta-analysis of traits of co-generic annual and perennial species (including both selected and wild species) to explore the consequences for water requirements of shifting from annual to perennial crops under current and future climates. The larger and more developed roots of perennial crops may allow a better exploitation of soil water resources than annual species. At the same time, perennial crops may require adequate water supply for longer periods and lead to lower yields per unit area, thus requiring irrigation of larger areas.