H54F-07:
Nonstationary Hydrological Frequency Analysis: Theoretical Methods and Application Challenges

Friday, 19 December 2014: 5:25 PM
Lihua Xiong, Wuhan University, Wuhan, China
Abstract:
Because of its great implications in the design and operation of hydraulic structures under changing environments (either climate change or anthropogenic changes), nonstationary hydrological frequency analysis has become so important and essential. Two important achievements have been made in methods. Without adhering to the consistency assumption in the traditional hydrological frequency analysis, the time-varying probability distribution of any hydrological variable can be established by linking the distribution parameters to some covariates such as time or physical variables with the help of some powerful tools like the Generalized Additive Model of Location, Scale and Shape (GAMLSS). With the help of copulas, the multivariate nonstationary hydrological frequency analysis has also become feasible. However, applications of the nonstationary hydrological frequency formula to the design and operation of hydraulic structures for coping with the impacts of changing environments in practice is still faced with many challenges. First, the nonstationary hydrological frequency formulae with time as covariate could only be extrapolated for a very short time period beyond the latest observation time, because such kind of formulae is not physically constrained and the extrapolated outcomes could be unrealistic. There are two physically reasonable methods that can be used for changing environments, one is to directly link the quantiles or the distribution parameters to some measureable physical factors, and the other is to use the derived probability distributions based on hydrological processes. However, both methods are with a certain degree of uncertainty. For the design and operation of hydraulic structures under changing environments, it is recommended that design results of both stationary and nonstationary methods be presented together and compared with each other, to help us understand the potential risks of each method.