An Experimental Study to the Seismoelectric Responses of Unfrozen Water Content

Tuesday, 16 December 2014
Zhengping Liu, Lei Yuan and Lang Song, Southwest Jiaotong University, Chengdu, China
For many sections of the Qing-Cang railway line located in the permafrost regions, the monitoring of freeze–thaw cycling is a main mean for the railway operation as the seasons of the permafrost are the main factors that weaken the railway bed. The unfrozen water content is one of the most important parameters in the field monitoring and laboratory research of the freeze–thaw cycling of the permafrost. It has been already shown that the propagation of seismic waves inside a homogeneous porous medium induces a localized seismoelectric conversion field that moves along with the seismic waves, because of relative fluid motion in the pores. As the field is water saturation related, we initially conducted an experiment to study the seismoelectric responses varying with unfrozen water content. In the experiment, a cylinder frozen soil model which is heated gradually from bottom is set up to model a decrease temperature field, corresponding to that the unfrozen water content, from bottom to top. Then a seismic wave field is excited by a ultra acoustic transducer located on the top of the model and seismoelectric conversion responses are measured with a set of electrodes layout along the axis direction of the model with 1cm depth inside the model. At the same time, the temperature at each electrode is measured by a heat sensitive resistance near the electrode. Keeping the heating from bottom of the model, the measurement is performed at a fixed time period until the temperature of each electrode is increasing over zero degree centigrade. The experiment observations show: 1) The travel velocity of the seismoelectric signals is decreasing with increasing of temperature, or that of unfrozen water content, which also verify the flexibility of the experiment. 2) The amplitudes of the seismoelectric signals generally increase with that of temperature, corresponding to that of unfrozen water content increasing. 3) As the seimoelectric responses are measured with point-like electrodes, the experiment related to unfrozen water content have a high resolution in space and time.