B23J-07:
Shaping the Cities of Tomorrow: Integrating Local Urban Adaptation within an Environmental Framework
Tuesday, 16 December 2014: 3:20 PM
Matei Georgescu, Arizona State University, Tempe, AZ, United States
Abstract:
Contemporary methods focused on increasing urban sustainability are largely based on the reduction of greenhouse gas emissions. While these efforts are essential steps forward, continued characterization of urban sustainability solely within a biogeochemical framework, with neglect of the biophysical impact of the built environment, omits regional hydroclimatic forcing of the same order of magnitude as greenhouse gas emissions. Using a suite of continuous, multi-year and multi-member continental scale numerical simulations with the WRF model for the U.S., we examine hydroclimatic impacts for a variety of U.S. urban expansion scenarios (for the year 2100) and urban adaptation futures (cool roofs, green roofs, and a hypothetical hybrid approach integrating biophysical properties of both cool and green roofs), and compare those to experiments utilizing a contemporary urban extent. Widespread adoption of adaptation strategies exhibits regionally and seasonally dependent hydroclimatic impacts. For some regions and seasons, urban-induced warming in excess of 3°C can be completely offset by all adaptation approaches examined. For other regions, widespread adoption of some adaptation approaches leads to significant rainfall decline. Sustainable urban expansion therefore requires an integrated assessment that also incorporates biophysically induced urban impacts, and demands tradeoff assessment of various strategies aimed to ameliorate deleterious consequences of growth (e.g., urban heat island reduction).